organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

4-(4-Chlorophenyl)-5-phenylisoxazole

M. Krishnaiah,^a R. Ravi Kumar,^a Thanzaw Oo^{b*} and Pho Kaung^b

^aDepartment of Physics, SV University, Tirupati 517502, India, and ^bDepartment of Physics, Yangon University, Myanmar Correspondence e-mail: Thanzawoo06@gmail.com

Received 5 August 2009; accepted 26 August 2009

Key indicators: single-crystal X-ray study; T = 295 K; mean σ (C–C) = 0.005 Å; R factor = 0.063; wR factor = 0.197; data-to-parameter ratio = 10.5.

The title compound, C₁₅H₁₀ClNO, is a functionalized isoxazole with a chlorophenyl and a phenyl substitutent. The mean plane of the isoxazole ring is inclined to those of the two benzene ring mean planes by 38.32(16) and $43.91(18)^{\circ}$.

Related literature

For the chemistry and biological properties of isoxazoles, see: Bruno et al. (2004); Foti et al. (2004); He et al. (2000); Lakhvich et al. (1989); Lin et al. (1997); Makarov et al. (2005); Shipman (1995); Zhong et al. (2005). For related structures, see: Chang (2007); Tang et al. (2006); Zhang et al. (2006). For the synthesis, see: Subba Raju & Rao (1987).

Experimental

Crystal data C15H10CINO $M_r = 255.69$

Monoclinic, $P2_1/c$ a = 6.554 (2) Å

b = 25.966 (2) Å	
c = 7.4721 (19) Å	
$\beta = 106.171 \ (3)^{\circ}$	
V = 1221.2 (5) Å ³	
Z - 4	

Data collection

Bruker SMART CCD	2820 measured reflections
diffractometer	2132 independent reflections
Absorption correction: multi-scan	1851 reflections with $I > 2\sigma(I)$
(SADABS; Bruker, 2001)	$R_{\rm int} = 0.050$
$T_{\min} = 0.928, \ T_{\max} = 0.952$	

Refinement $R[F^2$

$R[F^2 > 2\sigma(F^2)] = 0.063$	204 parameters
$wR(F^2) = 0.197$	All H-atom parameters refined
S = 1.15	$\Delta \rho_{\rm max} = 0.27 \text{ e } \text{\AA}^{-3}$
2132 reflections	$\Delta \rho_{\rm min} = -0.40 \text{ e } \text{\AA}^{-3}$

Mo $K\alpha$ radiation $\mu = 0.30 \text{ mm}^{-1}$

 $0.3 \times 0.2 \times 0.2$ mm

T = 295 K

Data collection: SMART (Bruker 2007); cell refinement: SAINT (Bruker 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: enCIFer (Allen et al., 2004) and PARST (Nardelli, 1995).

MK thanks Ed. CEL, New Delhi, for sponsoring a visit to Yangon University, Myanmar.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2135).

References

- Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.
- Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruno, G., Rotondo, A., Grassi, G., Foti, F., Risitano, F. & Nicoló, F. (2004). Acta Cryst. C60, 0496-0497.
- Chang, X.-H. (2007). Acta Cryst. E63, o3074.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Foti, F., Grassi, G., Risitano, F., Rotondo, E. & Zona, D. (2004). Synlett, pp. 1577-1578.
- He, H.-W., Li, M.-Q. & Huang, G.-L. (2000). Pesticides, 8, 4-7.
- Lakhvich, F. A., Koroleva, E. V. & Akhrem, A. A. (1989). Chem. Heterocycl. Compd, 25, 359-375.
- Lin, S. T., Kuo, S. H. & Yang, F. M. (1997). J. Org. Chem. 62, 5229-5231.
- Makarov, V. A., Riabova, O. B., Granik, V. G., Wutzler, P. & Schmidtke, M. (2005). J. Antimicrob. Chemother. 55, 483-488.
- Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Shipman, M. (1995). Contemp. Org. Synth. 2, 1-17.
- Subba Raju, G. V. & Rao, K. S. (1987). Curr. Sci. 56, 1280-1281.
- Tang, L.-D., Zhang, D.-T., Sun, F.-G., Duan, G.-Y. & Wang, J.-W. (2006). Acta Cryst. E62, o1298-o1299.
- Zhang, D.-T., Ma, Y. & Shi, N.-Q. (2006). Acta Cryst. E62, 05213-05214.
- Zhong, B., Li, Z.-M. & Song, H.-B. (2005). Acta Cryst. E61, o2621-o2622.

supplementary materials

Acta Cryst. (2009). E65, o2324 [doi:10.1107/S1600536809034254]

4-(4-Chlorophenyl)-5-phenylisoxazole

M. Krishnaiah, R. Ravi Kumar, T. Oo and P. Kaung

Comment

Isoxazoles are often used as pharmacophores in medicinal chemistry (Makarov *et al.*, 2005). They are also important intermediates in the synthesis of many complex natural products (Lakhvich *et al.*, 1989; Shipman, 1995). Recent synthetic efforts have established the importance of biologically active heterocyclic compounds (Foti *et al.*, 2004). Of particular importance are the derivatives of isoxazoles representing one of the most active classes of compounds widely used in agrochemicals and pharmaceuticals (He *et al.*, 2000). Such compounds have been studied from a synthetic (Bruno *et al.*, 2004) and also from a structural viewpoint (Zhong *et al.*, 2005). Isoxazole derivatives exhibit anticonvulsant, antibacterial, antiasthmatic, and other pharmacological activities (Lin *et al.*, 1997). In this article, we report on the crystal structure of the title compound, 4-(4-chloro phenyl)-5-phenylisoxazole.

The molecular structute of the title compound is illustrated in Fig. 1 and the geometrical parameters are avilable in the archived CIF. The title compound is a functionalized isoxazole with a chlorophenyl and a phenyl substituent at positions 4 (C9) and 5 (C2), respectively, on the five-membered heterocyclic ring. They are inclined to the planar isoxazole ring mean plane by $38.32 (16)^{\circ}$ and $43.91 (18)^{\circ}$, respectively. The torsion angles [C10-C9-C11-C12 = $38.4 (4)^{\circ}$, C2-C9-C11-C16 = $36.6 (5)^{\circ}$, O1-C2-C3-C4 = $44.1 (4)^{\circ}$, and C9-C2-C3-C8 = $43.7 (5)^{\circ}$] confirm that these rings are twisted with respect to the plane of the isoxazole ring. The bond lengths of the isoxazole ring are normal and comparable to those reported for related structures: [3-(4-Chlorophenyl)isoxazol-5-yl]methanol (Tang *et al.*, 2006), 3-(4-Chlorophenyl)isoxazole-5-carbalde-hyde (Zhang *et al.*, 2006), and 3-(2-Chlorophenyl)-*N*-methylisoxazole-5-carboxamide (Chang, 2007). However, bond length C2-C9 [1.359 (4) A°] is lengthened compared to the corresponding values in the above three related structures. {1.337 (3), 1.334 (3), 1.336 (3) Å, respectively}. This may be due to the steric effects caused by the substituents attached at atoms C2 and C9 on the isoxazole ring.

Experimental

The title compound was prepare according the the published procedure (Subba Raju & Rao, 1987). Recrystallization from n-hexane-benzene (1:1, v:v) by slow evaporation gave colourless block-like crystals suitable for X-ray diffraction analysis.

Refinement

All the H-atoms were clearly located in difference electron-density maps and were freely refined: C-H = 0.91 (5) - 1.00 (4) Å.

Figures

Fig. 1. View of the molecular structure of the title compound, showing the atom-labelling scheme and displacement ellipsoids drawn at the 50% probability level.

4-(4-Chlorophenyl)-5-phenylisoxazole

Crystal data	ļ
--------------	---

$C_{15}H_{10}CINO$	$F_{000} = 528$
	$D_{\rm x} = 1.391 {\rm ~Mg~m}^{-3}$
$M_r = 255.69$	$D_{\rm m} = 1.39 {\rm ~Mg} {\rm ~m}^{-3}$
	$D_{\rm m}$ measured by none
Monoclinic, $P2_1/c$	Mo <i>K</i> α radiation, $\lambda = 0.71069$ Å
Hall symbol: -P 2ybc	Cell parameters from 2895 reflections
a = 6.554 (2) Å	$\theta = 2.4 - 25.0^{\circ}$
b = 25.966 (2) Å	$\mu = 0.30 \text{ mm}^{-1}$
c = 7.4721 (19) Å	<i>T</i> = 295 K
$\beta = 106.171 \ (3)^{\circ}$	Block, colourless
V = 1221.2 (5) Å ³	$0.3\times0.2\times0.2~mm$
Z = 4	

Data collection

Bruker CCD diffractometer	2132 independent reflections
Radiation source: fine-focus sealed tube	1851 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.050$
T = 295 K	$\theta_{\text{max}} = 25.0^{\circ}$
ω scans	$\theta_{\min} = 2.9^{\circ}$
Absorption correction: multi-scan (SADABS; Bruker, 2001)	$h = -1 \rightarrow 7$
$T_{\min} = 0.928, T_{\max} = 0.952$	$k = -1 \rightarrow 30$
2820 measured reflections	$l = -8 \rightarrow 8$

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	All H-atom parameters refined
$R[F^2 > 2\sigma(F^2)] = 0.063$	$w = 1/[\sigma^2(F_0^2) + (0.1057P)^2 + 0.4763P]$ where $P = (F_0^2 + 2F_c^2)/3$

$wR(F^2) = 0.197$	$(\Delta/\sigma)_{\rm max} = 0.013$
<i>S</i> = 1.15	$\Delta \rho_{max} = 0.27 \text{ e } \text{\AA}^{-3}$
2132 reflections	$\Delta \rho_{\rm min} = -0.40 \text{ e} \text{ Å}^{-3}$
204 parameters	Extinction correction: SHELXL97 (Sheldrick, 2008), $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
Primary atom site location: structure-invariant direct	

Primary atom site location: structure-invariant direct Extinction coefficient: 0.024 (6)

Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
0.1131 (4)	0.71167 (11)	0.9809 (4)	0.0706 (8)
0.0578 (3)	0.65915 (8)	0.9619 (3)	0.0655 (6)
0.1585 (4)	0.63669 (11)	0.8469 (4)	0.0539 (7)
0.1165 (5)	0.58171 (11)	0.8114 (4)	0.0592 (7)
-0.0886 (6)	0.56265 (14)	0.7745 (5)	0.0757 (9)
-0.1270 (7)	0.51065 (16)	0.7433 (7)	0.0921 (12)
0.0349 (8)	0.47763 (15)	0.7496 (6)	0.0913 (12)
0.2396 (7)	0.49578 (15)	0.7837 (6)	0.0865 (11)
0.2801 (6)	0.54770 (13)	0.8143 (5)	0.0710 (9)
0.2800 (4)	0.67225 (11)	0.7910 (4)	0.0524 (7)
0.2441 (5)	0.71820 (12)	0.8794 (4)	0.0632 (8)
0.4076 (4)	0.66740 (10)	0.6569 (4)	0.0506 (6)
0.5940 (4)	0.69549 (11)	0.6830 (4)	0.0560 (7)
0.7069 (4)	0.69393 (11)	0.5508 (4)	0.0587 (7)
0.6323 (5)	0.66396 (11)	0.3947 (5)	0.0596 (8)
0.77032 (15)	0.66286 (4)	0.22763 (14)	0.0817 (4)
0.4495 (5)	0.63545 (13)	0.3666 (5)	0.0641 (8)
0.3369 (5)	0.63760 (11)	0.4988 (4)	0.0586 (7)
0.431 (7)	0.5603 (15)	0.846 (5)	0.086 (11)*
0.297 (5)	0.7525 (13)	0.865 (5)	0.069 (9)*
0.650 (5)	0.7156 (13)	0.801 (5)	0.073 (10)*
0.836 (6)	0.7127 (13)	0.568 (5)	0.070 (9)*
0.204 (6)	0.6189 (14)	0.476 (5)	0.075 (9)*
0.394 (6)	0.6146 (16)	0.256 (6)	0.094 (12)*
	x 0.1131 (4) 0.0578 (3) 0.1585 (4) 0.1165 (5) -0.0886 (6) -0.1270 (7) 0.0349 (8) 0.2396 (7) 0.2801 (6) 0.2800 (4) 0.2441 (5) 0.4076 (4) 0.5940 (4) 0.7069 (4) 0.6323 (5) 0.77032 (15) 0.4495 (5) 0.3369 (5) 0.431 (7) 0.297 (5) 0.650 (5) 0.836 (6) 0.204 (6) 0.394 (6)	x y $0.1131(4)$ $0.71167(11)$ $0.0578(3)$ $0.65915(8)$ $0.1585(4)$ $0.63669(11)$ $0.1165(5)$ $0.58171(11)$ $-0.0886(6)$ $0.56265(14)$ $-0.1270(7)$ $0.51065(16)$ $0.0349(8)$ $0.47763(15)$ $0.2396(7)$ $0.49578(15)$ $0.2396(7)$ $0.49578(15)$ $0.2396(7)$ $0.49578(15)$ $0.2800(4)$ $0.67225(11)$ $0.2441(5)$ $0.71820(12)$ $0.4076(4)$ $0.66740(10)$ $0.5940(4)$ $0.69549(11)$ $0.7069(4)$ $0.69393(11)$ $0.6323(5)$ $0.66286(4)$ $0.4495(5)$ $0.63545(13)$ $0.3369(5)$ $0.63760(11)$ $0.431(7)$ $0.5603(15)$ $0.297(5)$ $0.7125(13)$ $0.836(6)$ $0.7127(13)$ $0.204(6)$ $0.6146(16)$	x y z $0.1131(4)$ $0.71167(11)$ $0.9809(4)$ $0.0578(3)$ $0.65915(8)$ $0.9619(3)$ $0.1585(4)$ $0.63669(11)$ $0.8469(4)$ $0.1165(5)$ $0.58171(11)$ $0.8114(4)$ $-0.0886(6)$ $0.56265(14)$ $0.7745(5)$ $-0.1270(7)$ $0.51065(16)$ $0.7433(7)$ $0.0349(8)$ $0.47763(15)$ $0.7496(6)$ $0.2396(7)$ $0.49578(15)$ $0.7837(6)$ $0.2801(6)$ $0.54770(13)$ $0.8143(5)$ $0.2800(4)$ $0.67225(11)$ $0.7910(4)$ $0.2441(5)$ $0.71820(12)$ $0.8794(4)$ $0.4076(4)$ $0.66740(10)$ $0.6559(4)$ $0.5940(4)$ $0.69393(11)$ $0.5508(4)$ $0.7069(4)$ $0.69393(11)$ $0.3947(5)$ $0.77032(15)$ $0.66286(4)$ $0.22763(14)$ $0.431(7)$ $0.5603(15)$ $0.846(5)$ $0.297(5)$ $0.7525(13)$ $0.865(5)$ $0.650(5)$ $0.7127(13)$ $0.568(5)$ $0.204(6)$ $0.6189(14)$ $0.476(5)$ $0.394(6)$ $0.6146(16)$ $0.256(6)$

supplementary materials

H7	0.353 (7)	0.4749 (18)	0.780 (6)	0.102 (13)*
H4	-0.208 (6)	0.5869 (15)	0.763 (5)	0.085 (11)*
H6	0.014 (7)	0.4435 (19)	0.723 (6)	0.102 (13)*
Н5	-0.270 (8)	0.4997 (19)	0.722 (7)	0.122 (17)*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	0.0793 (17)	0.0725 (17)	0.0737 (17)	-0.0026 (12)	0.0440 (14)	-0.0121 (12)
01	0.0685 (13)	0.0744 (13)	0.0670 (13)	-0.0023 (10)	0.0411 (10)	-0.0038 (10)
C2	0.0534 (14)	0.0615 (16)	0.0551 (15)	0.0020 (11)	0.0289 (11)	0.0019 (12)
C3	0.0649 (16)	0.0626 (16)	0.0607 (17)	-0.0020 (12)	0.0351 (13)	0.0094 (12)
C4	0.0681 (19)	0.074 (2)	0.093 (3)	-0.0085 (16)	0.0371 (17)	0.0076 (18)
C5	0.085 (2)	0.081 (2)	0.115 (3)	-0.022 (2)	0.036 (2)	0.007 (2)
C6	0.119 (3)	0.062 (2)	0.097 (3)	-0.013 (2)	0.038 (2)	0.0002 (19)
C7	0.100 (3)	0.067 (2)	0.102 (3)	0.0114 (19)	0.044 (2)	0.0039 (18)
C8	0.0680 (19)	0.0662 (19)	0.088 (2)	0.0002 (15)	0.0364 (16)	0.0052 (16)
C9	0.0507 (14)	0.0587 (15)	0.0550 (16)	-0.0009 (11)	0.0267 (11)	0.0006 (11)
C10	0.0679 (17)	0.0631 (17)	0.0684 (19)	-0.0038 (13)	0.0349 (14)	-0.0058 (14)
C11	0.0521 (14)	0.0517 (14)	0.0565 (16)	0.0007 (10)	0.0291 (12)	0.0026 (11)
C12	0.0555 (15)	0.0555 (14)	0.0653 (18)	-0.0009 (11)	0.0307 (13)	0.0018 (13)
C13	0.0517 (15)	0.0607 (16)	0.0726 (19)	0.0001 (12)	0.0322 (13)	0.0093 (14)
C14	0.0620 (16)	0.0608 (16)	0.069 (2)	0.0128 (12)	0.0403 (14)	0.0125 (13)
Cl1	0.0872 (7)	0.0946 (7)	0.0854 (7)	0.0188 (4)	0.0606 (5)	0.0153 (4)
C15	0.0730 (19)	0.0686 (18)	0.0605 (18)	0.0039 (14)	0.0348 (14)	-0.0036 (14)
C16	0.0591 (16)	0.0638 (17)	0.0609 (17)	-0.0087(13)	0.0300 (13)	-0.0042 (13)

Geometric parameters (Å, °)

N1—C10	1.306 (4)	C8—H8	1.00 (4)
N1—O1	1.408 (3)	C9—C10	1.415 (4)
O1—C2	1.353 (3)	C9—C11	1.478 (4)
С2—С9	1.359 (4)	С10—Н10	0.97 (3)
C2—C3	1.464 (4)	C11—C16	1.380 (4)
C3—C8	1.385 (4)	C11—C12	1.389 (4)
C3—C4	1.386 (5)	C12—C13	1.390 (4)
C4—C5	1.381 (6)	С12—Н12	1.00 (4)
C4—H4	0.99 (4)	C13—C14	1.374 (5)
C5—C6	1.355 (6)	С13—Н13	0.96 (4)
С5—Н5	0.95 (5)	C14—C15	1.374 (5)
C6—C7	1.377 (6)	C14—Cl1	1.734 (3)
С6—Н6	0.91 (5)	C15—C16	1.389 (4)
С7—С8	1.381 (5)	С15—Н15	0.97 (4)
С7—Н7	0.92 (5)	С16—Н16	0.97 (4)
C10—N1—O1	105.0 (2)	C2—C9—C11	129.8 (3)
C2—O1—N1	108.9 (2)	C10-C9-C11	125.9 (2)
O1—C2—C9	109.5 (2)	N1—C10—C9	112.5 (3)
O1—C2—C3	115.8 (2)	N1—C10—H10	120 (2)

C_0 C_2 C_2	124.9 (2)	C0 C10 U10	129 (2)
C9 - C2 - C3	134.8 (3)	C9—C10—H10	128 (2)
C8—C3—C4	118.6 (3)	C16—C11—C12	119.2 (3)
C8—C3—C2	120.9 (3)	C16—C11—C9	120.6 (2)
C4—C3—C2	120.5 (3)	C12—C11—C9	120.1 (3)
C5—C4—C3	120.2 (4)	C11—C12—C13	120.4 (3)
С5—С4—Н4	120 (2)	C11—C12—H12	119 (2)
C3—C4—H4	119 (2)	C13—C12—H12	120 (2)
C6—C5—C4	120.6 (4)	C14—C13—C12	119.1 (3)
С6—С5—Н5	123 (3)	C14—C13—H13	120 (2)
C4—C5—H5	116 (3)	C12—C13—H13	121 (2)
C5—C6—C7	120.2 (4)	C13—C14—C15	121.6 (3)
С5—С6—Н6	123 (3)	C13—C14—Cl1	119.1 (2)
С7—С6—Н6	117 (3)	C15—C14—Cl1	119.3 (3)
C6—C7—C8	119.8 (4)	C14—C15—C16	118.9 (3)
С6—С7—Н7	123 (3)	C14—C15—H15	122 (2)
С8—С7—Н7	117 (3)	C16—C15—H15	119 (2)
C7—C8—C3	120.5 (3)	C11—C16—C15	120.9 (3)
С7—С8—Н8	119 (2)	C11-C16-H16	120 (2)
С3—С8—Н8	120 (2)	С15—С16—Н16	119 (2)
C2—C9—C10	104.0 (2)		
C10—N1—O1—C2	-0.6 (3)	C3—C2—C9—C11	4.8 (6)
N1—O1—C2—C9	0.7 (3)	O1—N1—C10—C9	0.3 (4)
N1—O1—C2—C3	-179.6 (2)	C2-C9-C10-N1	0.1 (4)
O1—C2—C3—C8	-135.8 (3)	C11-C9-C10-N1	175.5 (3)
C9—C2—C3—C8	43.7 (5)	C2-C9-C11-C16	36.6 (5)
O1—C2—C3—C4	44.1 (4)	C10-C9-C11-C16	-137.5 (3)
C9—C2—C3—C4	-136.4 (4)	C2-C9-C11-C12	-147.5 (3)
C8—C3—C4—C5	0.7 (5)	C10-C9-C11-C12	38.4 (4)
C2—C3—C4—C5	-179.2 (4)	C16-C11-C12-C13	0.5 (4)
C3—C4—C5—C6	0.4 (7)	C9-C11-C12-C13	-175.4 (3)
C4—C5—C6—C7	-1.2 (7)	C11-C12-C13-C14	-0.4 (4)
C5—C6—C7—C8	1.0 (7)	C12-C13-C14-C15	-0.2 (4)
C6—C7—C8—C3	0.2 (6)	C12-C13-C14-Cl1	178.9 (2)
C4—C3—C8—C7	-1.0 (5)	C13-C14-C15-C16	0.7 (5)
C2—C3—C8—C7	179.0 (3)	Cl1—C14—C15—C16	-178.4 (2)
O1—C2—C9—C10	-0.5 (3)	C12-C11-C16-C15	0.0 (4)
C3—C2—C9—C10	179.9 (3)	C9—C11—C16—C15	175.9 (3)
O1—C2—C9—C11	-175.6 (3)	C14—C15—C16—C11	-0.6 (5)

Fig. 1

